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Ames Physical Environment
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Ames Network Environment
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Problem

Threats

I Effectiveness
of attack tools

I Highly
motivated
attackers

I Deviation
from classical
attack
sequence

Mitigation

I Near
real-time
information
sharing

I Automated
response
included in
tools

New Risks

I Unintentional
Disruption

I Denial of
Service
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Whitelist Characteristics

Whitelists:

I Specify site-critical
resources

I Prevent automated
response block

Challenges

I Environment specific

I Difficult to
comprehensively construct

I Evolve over time

Examples

I E-Mail Anti-spam
Whitelists

I Web-filter / Proxy
Whitelists

Other Options

I Post-response cost
estimation

Goal: Utilize available data to automate whitelist generation.
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Desired Qualities (What makes a good whitelist?)

I Low false positive rate (whitelist an IP erroneously)

I Low false negative rate (fail to whitelist an important IP)

I Real-time classification
I Minimal maintenance

I Updatable / adaptive
I Self-generating
I Intuitive scoring

I Easy to interpret
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Dynamic Whitelist Architecture

NetFlow

Firewall Logs

Python 
Processing

MySQL

Scored
Data

Designated
Categories

Classifier

Blueguy Icon From:
http://www.flickr.com/photos/zurbinc/3291613326/in/set-72157614084284858/
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Cooking Data

NetFlow

I Tuples of the form
(SIP,SP,DIP,DP,Bytes,Proto,Time)

I Processed into
aggregate statistics,
and normalized

I Number of flows
I Number of bytes
I Time since last

visited
I Peer count

Firewall

I Tuples of the form
(SIP,SP,DIP,DP,{allow |block},Time)

I Processed into
aggregate statistics,
and normalized

I Number of blocks

(IP, flows, datavol, peercount, lastseen, blocks)
IP flows datavol peercount lastseen blocks

aaa.bbb.ccc.ddd 1.85e-07 5.53e-09 0.00e+00 0.359 0
www.xxx.yyy.zzz 1.85e-07 3.71e-09 0.00e+00 0.711 12
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Data Summary

I Collected one month of NetFlow data: 1,677,720 IP addresses.

I Of those, 5,571 were categorized according to our groups.

Category Class Count Prior

ANL Whitelist
Upstream Routers w 36 1
ISU DNS servers
ESNet
Google l 754 0.75
Yahoo Search
.edu,.gov,.mil d 1,289 0.5
Emerging Threats b 2,603 0.25

Prior: ≈ P(Whitelist | Intrusion Response, NetFlow Traffic Seen)
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Approaches

I Classifiers vs. Score Estimators
I Classification = Score + Threshold

I Score-based dynamic whitelist approaches
I Naive approach - any destination IP from an AL host

I 28,908 collected IP addresses were listed by dynamic blacklisting
services.

I Linear Regression - Linear function value estimate
I Naive Bayes - Relative score
I Bayesian networks - Probabilistic score
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Linear Regression

I Fit a curve to data

I Model:
Yi = β0 +βxi + εi

I Useful for:
I Estimating fit of a

model
I Predicting values

I Pitfalls
I Assumes linear

model is
appropriate

I Assumes normal
distribution

I Assumes common
variance between xi
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Bayesian Networks

I Based on Bayes’ equation: P(A|B) = P(B|A)∗P(A)
P(B)

I Bayesian Network: A graphical model of dependencies
I Useful for:

I Modelling arbitrary distributions
I Bayes Nets: Returning an actual probability

I Pitfalls:
I Naive Bayes: Assumes all features are independent

Bayesian Network Model Naive Bayes Model
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Tested

I Impact of Flow Directionality (In? Out? Both?)

I Feature Selection

I Score Type

I Bayesian Networks - Learned vs. Defined structure
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Results: Regression

Comparison of Linear Regression approaches

False positive rate
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Out Only AUC=0.953
In Only AUC=0.915
Out and In AUC=0.946
Out and In + FW Block AUC=0.948
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Results: Linear Regression Models

Out S = F +L+D−F ∗L
In S = F +L−P−F ∗L

S = iL+oF +oD− iP +oL−oP−
In + Out oF ∗ iP−oF ∗oL+ iL∗oP− iP ∗oP−oL∗oP−

iL∗oL−oD ∗oP
In + Out + Block S = iF + iL+oF − iP−oL+oD− iF ∗oF −oF ∗oL−

iP ∗oD− iL∗oL+ iL∗oF

Legend:

S - Score F - Flows
L - Lastseen D - Data Volume
P - Peer Count o - Outbound
i - Inbound
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Results: Naive Bayes

Inbound Flows Only (0.942) Outbound Flows Only (0.953)

In and Outbound Flows (0.945) In and Out + Blocks (0.945)
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Results: Bayesian Networks

Inbound Flows Only (0.963) Outbound Flows Only (0.967)

In and Outbound Flows (0.969) In and Out + Blocks (0.970)
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Results: Bayesian Network Structures - In/Out Only

class

in_flows

in_datavol in_peercount

in_lastseen

class

out_flows

out_datavol

out_peercount

out_lastseen
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Results: Bayesian Network Structures - In + Out

class

in_flows

in_datavol

in_peercount in_lastseen

out_flows

out_datavol

out_peercount out_lastseen
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Results: Bayesian Network Structures - In + Out + Block

class

linear_blockcount

in_flows

in_datavol

in_peercount in_lastseen

out_flows

out_datavol

out_peercount out_lastseen
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Discussion / Speculation

I Linear Regression
and Naive Bayes
both have
assumptions which
do not hold.

I Coupling with
post-response
estimation may be
beneficial.

I Sufficient information
to model IPs seen
frequently.

Method Data AUC

LR

Out Only 0.953
In Only 0.915
In + Out 0.946
In + Out + FW 0.948

NB

Out Only 0.953
In Only 0.942
In + Out 0.945
In + Out + FW 0.945

BN

Out Only 0.963
In Only 0.967
In + Out 0.969
In + Out + FW 0.970
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Take Aways

I Process to define a dynamic whitelist:
1 Define broad categories of resources.
2 Provide rough estimates of “priors”.
3 Define features.
4 Gather data.
5 Apply classifier(s) using tool of choice. (Weka, R, Python, Matlab,

etc. . . )
6 Compare results with employed blacklists.

I Feasible to model important site resources with minimal effort /
maintenance.
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Continuing Efforts

I Live “burn-in” (AL Deployment)
I Address with changing behavior

I Sliding window?
I Time-based decay?

I Performance tweaking
I Additional Features / Data Sources
I Alternative scoring functions

I Generalize to other data types

I Explore other scoring approaches

I Portable tool
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